Deformable Radial Basis Functions
نویسندگان
چکیده
Radial basis function networks (RBF) are efficient general function approximators. They show good generalization performance and they are easy to train. Due to theoretical considerations RBFs commonly use Gaussian activation functions. It has been shown that these tight restrictions on the choice of possible activation functions can be relaxed in practical applications. As an alternative difference of sigmoidal functions (SRBF) have been proposed. SRBFs have an additional parameter which increases the ability of a network node to adapt its shape to input patterns, even in cases where Gaussian functions fail. In this paper we follow the idea of incorporating greater flexibility into radial basis functions. We propose to use splines as localized deformable radial basis functions (DRBF). We present initial results which show that DRBFs can be evaluated more effectively then SRBFs. We show that even with enhanced flexibility the network is easy to train and convergences robustly towards smooth solutions.
منابع مشابه
The method of radial basis functions for the solution of nonlinear Fredholm integral equations system.
In this paper, An effective and simple numerical method is proposed for solving systems of integral equations using radial basis functions (RBFs). We present an algorithm based on interpolation by radial basis functions including multiquadratics (MQs), using Legendre-Gauss-Lobatto nodes and weights. Also a theorem is proved for convergence of the algorithm. Some numerical examples are presented...
متن کاملA meshless method for optimal control problem of Volterra-Fredholm integral equations using multiquadratic radial basis functions
In this paper, a numerical method is proposed for solving optimal control problem of Volterra integral equations using radial basis functions (RBFs) for approximating unknown function. Actually, the method is based on interpolation by radial basis functions including multiquadrics (MQs), to determine the control vector and the corresponding state vector in linear dynamic system while minimizing...
متن کاملNumerical Solution of The Parabolic Equations by Variational Iteration Method and Radial Basis Functions
In this work, we consider the parabolic equation: $u_t-u_{xx}=0$. The purpose of this paper is to introduce the method of variational iteration method and radial basis functions for solving this equation. Also, the method is implemented to three numerical examples. The results reveal that the technique is very effective and simple.
متن کاملThe use of radial basis functions by variable shape parameter for solving partial differential equations
In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...
متن کاملReal-time 3D Deformations by Means of Compactly Supported Radial Basis Functions
We present an approach to real-time animation of deformable objects. Optimization of algorithms using compactly supported radial basis functions (CSRBF) allows us to generate deformations performed fast enough for such real-time applications as computer games. The algorithm described in detail in this paper uses space mapping technique. Smooth local deformations of animation objects can be defi...
متن کامل